rappestavom C e T s s bYWl Concerned with ; '
. stori :
concurrent access from different physica] locations, N8 and updating data, ofien including

7.4 Object Design

The object c.lesign phase deterplines the full definjtion

implementation, s well as the Interfaces and algorithms

The object desTgn pha§e afids Internal objects for imp

algorithms. Object design is analogues to the prelimin:

development life cycle.
During the object design phase, the designer must perform the following steps:
(i) Combine the three models to obtain operations on classes.

(ii) Design algorithm to implement operations.

(iii) Optimize access paths to data.
)

s of the classes and associations used in the

(iv) Implement control for external interactions.

| (v) Adjust class structure to increase inheritance.
(vi) Design associations.

(vii) Determine object representation.

(viii) Package classes and associations into modules.

141 Grouping the Three Models
Aeer completion of analysis phase, we have the three models: Object model, dynamic model and

functiong] model, but the object model is the main framework around which the design is cons.tructefi.
el. In making this

The designer must convert the actions and activities of the dynamic mod R

: Vesion, we start the process of mapping the logical structure of the analysis mo
"®hization of 4 program,

con

Scanned with CamScanner

== e
cane T

e ———— L ——— R — '
112 --Ol)-lLLl()r'LflEijSyslcmt bl }u the functional and dynamicC mOdil_ onto the Ubj;_.;\ < (he
e . —— crations rom o del becomes an operation on an gh;, o6 1
Ths GPSEE mw' lrdn;\fc roc[::ss from the functional moc:;uon on an object, depending 0;1]'1} tpccﬁw\u
model for implementation. 7 zodcl may also becomée an op i s O
An event from the dynamic 1 gy
implcmcntalion of control. LR
toni ithms) g that implements it clearly , J;
= Dcsngnml-f! Algt(l,ll;:l analysis model must be assigned an a]g?r::lhg::sign ThI; el iR fpec, flza:ind . t
5 eration from ¢ = = = ted during Syste .] o Py
fl.‘rli'ucchic(l)::ly according to the optlmlzatloln QO?I; scclf:t of its client, but the algorithm shows how th, Del
. . vie :
tells what the operation does from the P " o
jon 18 . ; 3 recursively, untj] 4.
operation is do¢S ivided i Is on simpler operations and so on the 7.4:6 ”
An algorithm may be supd1v1dcd into hcatl et directly without further refinements, ,\SSoC“
Jowest level operations are simple enough to 1mp and 37
. i t: : ced @
The designer of algorithm mus . ' ing operations. se
e Choosc algorithms that minimize the cost of {mplemen £ op one ot
o Sclect data structures appropriate t0 the algorithms. A
e Define new internal classes and operation as n.ecessary. analb'f
e Assign responsibility for operations to appropriate classes. acoes
intl
" — P poln
7.4.3 Design Optimization ‘ - _
In the design optimization, we optimize the model which 1s rpade with the help of Sy\j;;rel (:;Slin ang).
analysis. The analysis model contains the logical information about the 'System, e e desigy the 2:
model must add details to support efficient information access. For the efﬁc1e§c§ a;l tc arity, \Ze must as as
ioi i jon i 1 ut new redu
extend and restructure the model. The original mforrnatlc?n is not_ discar le ,h iy hnda-m .
information is added to optimize access paths and preserve intermediate results that wou .ot_ erwise i
have to be recomputed. Algorithm can be rearranged to reduce the number of operations to be obie
executed.
During the design optimization, the designer must: e
o Add redudant associations to minimize access cOSt and maximize convenience of accessing -
o Rearrange the computation for greater efficiency and rearrange the order of execution of
appropriate algorithm. 7.4
e Save derived attributes to avoid recomputation of complicated expressions. Pr
me
7.4.4 Implementation of Control fis
The designer must refine the strategy for implementing the state-event models present in the dynamic pa

model. In the system design, we have chosen the basic strategy for realizing the dynamic model and

in the object design we must flesh out this strategy.

There are three basic approaches to implementing the dynamic model (as explained in Section

7.3.6).

(i) Using the location within the program to hold state (procedure-driven system)

(11) Dir.ect implementation of a state machine mechanism (event-driven system)
(7if) Using concurrent system. . |

S —

7.4.5 Adjustment of Inheritance

During
the am

moving

object desi iti i

N I;,t ! jn;]i?;t ;ﬁzedegﬁ;tlons gf mtemal. classes and operations can be adjusted to incres

sifibaies e er.ation :Cf adjustment include modifying the afgument list of a method
: p rom a class into a superclass, defining an abstract superclass v

Scanned with CamScanner

B OMT Methodology m 13
y shared behavior of several classes, and s
¥

covel "t Delegation should be used rather
spec! :ut not truly a subclass.
s

cla - increasing the amount of inheritapce designer shoulg:

, Rearrange and adjust cla'sscs and operations (o increase inheritance
. Abstract common behavior out of groups of classes. 4
, Use delegation 10 shz?rc behavior when inheritance
Delegation is also technique to share behavior among

plitting an Operation into

il j an inherited part and a
an 1nheritance when a ¢l

ass is similar to another =

1S symmetrically invalid.
the classes,
7.4.6 Design of Associations

ciation provides access paths between objects,
ASSognalvsis. To make intelligent decisions about
?:eled ancf the implement each ass'oclialion as a dist
‘ classes in the association.

There are conceptual entities useful for modeling
iﬁssocialion, we first need analyze the way they are
et object or by adding object valued attributes to
one or both

Associations subsume many implementation techniques under
analysis, but they can be irpp.lemented as pgimer with in objects or distinct objects depending on their
access patterns. An association traversed in a single direction can be implemented as an attribute
pointing 1o another objects or a set of objects, depending on the multiplicity of the association.

A bidirectional association can be implemented as a pair of pointers, but operations that update

the association must always modify both directions of access. Associations can also be implemented
as association objects.

a single uniform notation during

7.4.7 Object Representation

For the exact representation, the designer must choose when to use primitive types in representing
objects and when to combine groups of related objects.
Classes can be defined in terms of other classes, but everything must be implemented in terms

of built-in primitive data types (such as integers, strings and enumerated type) supplied by the
programming language. Some classes can be combined.

7.4.8 Physical Packaging

Programs are made of discrete physical units that can be edited, compiled, imported, or otherwise
manipulated. Programs must be packaged into physical modules for editors and compilers as well as
for the convenience of programming terms. Object-oriented languages have various degrees of
packaging. ' '

Packaging ivolves the following issues:

¢ Hiding internal information from outside view (using private and protected data).

* Coherence of entities (entities should be organize in a coherent way).

¢ Constructing physical modules (entities should be organize in a common theme).

749 Object Design Documentation

DC.Sign decisions should be documented by extending the analysis model, by adding 'detail o the
O.bjw’ dynamic, and functional models. Implementation constructs are appropriatc, such as pomicrs

flm the object model), structured pseudocode (in the dynamic model) and functional expressions (in

¢ functiong] model).

The design document should be an extension of the Requirements An_alysis Document. Th:;s] the
o & document will include a revised and much more detailed description of the object model, in
&raphical form (object model diagrams) and textual form (class descriptions).

|

Scanned with CamScanner

desj

th C++ B 3 g .
design phase, and it must be kept Currey,

|14 m Object Oriented Systems wi
ing the

tended during t ‘

1 or concurrent tasks they t Ad

The functional model will also be ex : i ato cONrO
The dynamic model is implcmcnled using dnd, p o model s implemented By Toatichn " !
alysis model or its extension I8 adequate. If lhclz Y“t'l: i S eeded hiy §
i eir . algorithm:s ;
sroeram code. then structured pscudocodc for alg
[&' pr'
ipned model i of
ur designed model in softy, e‘
Te r

plcment yo

i nted using:
be impleme g)

can you im

7D lmplementation
ystem can

In this section we will di
oftware

scuss the how
v O ~ S
development. The s development of

(i) Programming Janguages

t system _
sy riting code should be straightforwayg

ready have been made during desigy

process. W
yntaxes of a particyly,

hould al
decisions into the s

(#i) Databasc managemen
is an extension of the design

Writing code £l
almost technical, because all the difficult decisions s
The code should be a simple translation of the design

L

language.

7.5.1 Using Programming Languages
ation of the system using programming
uages are capable of expressing the three

Janguage 1s a traditional way, most of ty,
aspects of software specification:

"N

Implement
programming lang
e Data structurc
e Dynamic flow of control
e Functional transformation
s a subset of a language. The statements thy

Data structure provides a way of data declaration, i
are used to declare data structures are commonly non-procedural part of the languages.
Flow of control may be expressed either procedurally (conditionals, loops and calls) or non.

procedurally (rules, constraints, tables and state machines). Traditional languages are purely procedura|

although the programmer can implement non procedural constructs as data.
Functional transformations are expressed in terms of the primitive operations of the language, s
well as calls to subprograms. Most procedural languages are similar in the kinds of functionality t’hey

supported do not differ greatly from FORTRAN.
There are two types of programming languages for implementation of an object-oriented desig:

(/) Object-oriented languages
(7i) Non-object oriented languages
(/) Object-Oriented Languages
Implementation of an object-ori T i :
e ”]CS? - 1Jh - zzlglet:do tfl:é}l)gi)r; rltsfga51§§t using an object-oriented language, bt
language is the most natural implementation target forr0 JeCt-onente.d concepts. The object-oriented
Good programming style is important t e object-oriented design.
programming; most benefits came from o e Seeits of object-oriented design ot
reuse of the new code on future pro'ecgtrseat(l)){)-r Cduce_d maintenance and enhancement Cozfslgand i
” .H%,“,,",““, programming style as wé'll - Object-oriented programming style guideli include
wineritance. There are number of langy @ uniquely applicable to Object-orieme(f s h o
are number of langiisbsd that e t:’) b&}ges th.at support object concepts such _Coﬁ“;epts such .
ject oriented programming such as CC++aS m}ﬁ?rltﬁﬁce'dTJai“
, small talk and Ja¥

Scanned with CamScanner

’ ' ' ‘ s VlkOMTh[‘\;!cthodol‘o»gy.l.l 115

Object-oriented Languages

i d‘,ﬂnt.lgfs' of
; R‘,usabll“‘ ode has be i
’ once 3 class or hC] i 2)\\’11 in VWI'“‘C“: C‘I'Cfltcd and dcbugged, it can be distributed to other
o«r.unmm for i dogal 1], OU?"“‘ This 1s called reusability. It is similar to the way a library
02 ctions i 3 P“’_LC‘ ural Janguage can be incorporated into different programs. The idea of
o‘ ability can be active by inheritance.
r:lExtensibility '
Most software 18 cventually extended. Extensibility is enhanced by

) Encapsulalion of classes and methods.

, Minimizing dependencies between classes and methods.
o Using methods to access attributes of other classes.

, Distinguishing public from private operations on 4. class.

The techniques for reusability enhance extensibility. .

» Robustness
A program is said to robust, if it does not fail even if it receives improper parameters. Robustness

eral bug (error) may be trade-off against efficiency. Robustness against user errors should

against interna
acrificed. Program should always protect against user and system errors.

never be §
It provides the facility of:

» Protection against errors.
o Optimization after the program execution.

o Validation of arguments.
« Avoidation of predefined limits. .

o Service of debugging.

¢ Performance monitoring.
o Programming-in-the-Large ;

Programming-in-the-large refers to writing large, complex programs with teams of programmers.
The writing of large programs with team of programmer requires more discipline, best documentation
and communication than one-person or small projects. It provides the use of exactly the same names
as in the object model. You should make methods more readable and understandable.

(i) Non-Object-Oriented Language

Object-oriented concept can be mapped into non-object-oriented language constructs. There is

not a big problem (excluding issue of expressiveness) to implement object oriented design, because
hine language. Use of a non-object-oriented

programming languages are eventually converted to mac

language requires greater care and discipline to preserve the object oriented structure of the prograni.
The most non-object-oriented languages, like C, Ada, Pascal and Fortran provides the implementation
of object-oriented design.

Implementing an object-oriented design in a non-object-

52 . . R T ' :
Me steps as implementing a design in an object oriented language.
st map. Object-oriented concepts into

d language performs such a mapping

oriented language requires basically the

the Z?;Frﬁﬁr,afﬁmer using a non—objeclt-oriented 1u_nguagc-: mu
automatic;ntlyé#:gﬁ_threas ’Fhe corqpllcr for a objch—orlellt.c
. The steps required to implement a design arc:
: Translate classes into data structure (or records).
Pass arguments to methods (or functions).
h
I

Scanned with CamScanner

=

> . e
116 ® Object Oriented Systems with €
o Allocate storage for objects.
' - data structure.
Implement inheritance 11 data structu
ment method resolut
jations.

b,
Imple 10n

Implement assoc

Deal with concurrency.
details of classes.

e Encapsulate internal

m that is designed to provide ge,
cess to permanent data. A pp fi
. (

aring. 1t provides the managey, -
n

and is stored in onc or s
I¢

atabase System

\ database management system (DBMS) is a computcr pr-ogm :
Wity for storing. retrieving and controlling ac

al loss and makes it available for sh

asitory of data, called a database

7.5.2 Using D

purpose functionality
protects data against accident
of a permanenl. self-descriptive rep
files.

The Advantage of DBMS:
e Crash Recovery: The database is protected from h
some user CITors.
Data can be protected against u

the rules and ¢
d above facilities t

ardware crashes, disk media failureg ang

nauthorized users {0 read and write access,
onditions that data must satisfy. A DBMS ¢,

e Security:
hat may be provided by applicatiy,

e Integrity: You can specify
control the quality of its data over an
atabase can be access by multiple users at the sap,

programs.
e Sharing between Users: The same d
time.
Multiple application programs can read and write data fropy

e Sharing between Applications:
1o the same database. A database is natural medium that facilitates communication betwegy
frec-steady programs.

e Extensibility: \.Vithout interrupting the existing program data can be add to the database. Daty
can be reorganized for faster performance.

o Data Distribution: The database may be partitioned across various users, sites, organization
and hardware platforms.

Several DBMS paradigms are available:

e Hierarchical DBMS

e Network DBMS

e Relational DBMS

e Object-oriented DBMS
Hierarchical and Network DBMS brings the conceptual DBMS «

data structures. e
Relational QBMS present the database at a higher level of ab”
networks are easier to use. Relational DBMS implementations are i
mature and use smaller optimization techniques ¢
~ The object-oriented DBMS provide full supports for all th ~
f he object classes used by the programming language are th g
their qucls arc consistent, there is no need to transf e
unique for the database manager. orm the proge

| than hierarchies and
n performance as the

of the object design
the DBMS, because

Scanned with CamScanner

- L
T —

B od database have tho sbility to moel "2 OMT Methodology ® 116(4)
g . nted databas > e ki AN SR S
; - oriented database have the ability to mode] | the models directly with in the database

©obict slete problenV/solution modeli
.o a comi T 10deling capabil; i i .
| and dynamic binding. pability. It also provides the features of inheritance,

10"(“‘::: .
’lk:r;\l'lxll’ﬂ’lllhl]
' arison of Methodologies

6 .1 popular software engineeri
qre SCV cral popux gineering approaches for developing the softwares. And most

Ther® & Jaches are based on the data flow dia .
L appro . grams. In this i ino two other
of the compare with OMT methodology, which are: BECHEN We RIS PISEIEnS

wches 10 .
od Analysis/Structured Design (SA/SD)

pl‘Ol
R Sm]clur _
Jackson Structured Design (JSD)
¢ ¢

. e our aim is to clearly i i .)
anlcall) 0md ulmvlii‘s be:sz‘nr11~y lden}:lfy the major differences and similarities between the OMT
and otheT methods 1051ES, s¢ each approach has their own strengths and weaknesses.

7.6.1 Comparison with SA/SD

G.A/SD methodology contains much common features as OMT. Both methodologies us¢ similar
;nodcling COHS‘f‘fCtS and SUPP_OTt_ the three orthogpnal views of a system. SA/SD includes a variety
of potations for 1011“3“y s'pecn‘ymg SOftW&r(.:..Durmg the analysis phase, data flow diagrams, process
«pecificationss 2 c.iata dictionasy,, siate transinon diagrams, and entity relationship diagram ar€ used
;o logically describe a system. In ﬂ_le design phase, details are added to the analysis models and the
Jata flow diagrams arc converted into structure chart descriptions of programming language code.
The difterence between SA/SD and OMT is primarily a matter of style and emphasis.
o In SA/SD approach, the functional model dominates, the dynamics model is next important,
and the object model least important.
» SA/SD organizes a system around procedures, while OMT organizes a system around real-
world objects, or conceptional objects that exist in the user’s view of the world.
o SA/SD is useful for problems where functions are more important and complex than data.
o An SA/SD design has a clearly-designed system boundary, across which the software procedures
must communicate with the real world, so it can be difficult to extend a SA/SD design to a
new boundary. While it is much easier to extend an object oriented design; one merely adds
objects and relationship near the boundary to represent objects that existed previously only in
the outside world.
o An object oriented design is more extensible, provides better traceability, and ‘better integrates

database and programming code.

7.6.2 Comparison with JSD
Jackson Structured Development (JSD) is another methodology of software engineering. JSD has 2
ifferent development style than SA/SD or OMT. JSD does not distinguish between analysis ane
design and instead emphasizes on both phases together as specification. JSD divides system development
into two stages: specification, then implementation. A JSD model describes the real-world in terms
of entities, actions and' ordering of actions.
JSD software development consists of six sequential steps:
(i) Entity action '
(ii) Entity structure
(iii) Initial model
(iv) Function
(v) System timing
(vi) Implementation

Scanned with CamScanner

h 4

S R
s e T e B3 T

D——

11 6(5) m Object Oriented Systéxné with C++l i ———

— JSD approach uses graphical models, but JSD is less graphically oriented than SA/SD and

OMT. .

— JSD approach is complex and difficult to fully comprehend. JSD is complex because 1t wag

specifically designed to handle difficult real time problems. For these problems, ISD may
produce a superior design and be worth the effort.

— JSD places more emphasis on action and less on attributes than OMT.

Scanned with CamScanner

