
I nheritance between classes

Classes in C++ can be extended, creating new classes which retain characteristics of the base

class. This process, known as inheritance, involves a base class and a derived class: The derived

class inherits the members of the base class, on top of which it can add its own members.

For example, let's imagine a series of classes to describe two kinds of polygons: rectangles and

triangles. These two polygons have certain common properties, such as the values needed to

calculate their areas: they both can be described simply with a height and a width (or base).

This could be represented in the world of classes with a class Polygon from which we would

derive the two other ones: Rectangle and Triangle:

The Polygon class would contain members that are common for both types of polygon. In our

case: width and height. And Rectangle and Triangle would be its derived classes, with specific

features that are different from one type of polygon to the other.

Classes that are derived from others inherit all the accessible members of the base class. That

means that if a base class includes a member A and we derive a class from it with another

member called B, the derived class will contain both member A and member B.

The inheritance relationship of two classes is declared in the derived class. Derived classes

definitions use the following syntax:

class derived_class_name: public base_class_name

{ /*...*/ };

Where derived_class_name is the name of the derived class and base_class_name is the name of

the class on which it is based. The public access specifier may be replaced by any one of the

other access specifiers (protected or private). This access specifier limits the most accessible

level for the members inherited from the base class: The members with a more accessible level

are inherited with this level instead, while the members with an equal or more restrictive access

level keep their restrictive level in the derived class.

1

2

3

4

5

6

7

// derived classes

#include <iostream>

using namespace std;

20

10

class Polygon {

protected:

int width, height;

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

The objects of the classes Rectangle and Triangle each contain members inherited

from Polygon. These are: width, height and set_values.

The protected access specifier used in class Polygon is similar to private. Its only difference

occurs in fact with inheritance: When a class inherits another one, the members of the derived

class can access the protected members inherited from the base class, but not its private

members.

By declaring width and height as protected instead of private, these members are also

accessible from the derived classes Rectangle and Triangle, instead of just from members of

Polygon. If they were public, they could be accessed just from anywhere.

We can summarize the different access types according to which functions can access them in

the following way:

Access public protected private

members of the same class yes Yes yes
members of derived class yes Yes no
not members yes No no

Where "not members" represents any access from outside the class, such as from main, from

another class or from a function.

public:

void set_values (int a, int b)

{ width=a; height=b;}

};

class Rectangle: public Polygon {

public:

int area ()

{ return width * height; }

};

class Triangle: public Polygon {

public:

int area ()

{ return width * height / 2; }

};

int main () {

Rectangle rect;

Triangle trgl;

rect.set_values (4,5);

trgl.set_values (4,5);

cout << rect.area() << '\n';

cout << trgl.area() << '\n';

return 0;

}

class Rectangle: public Polygon { /* ... */ }

class Daughter: protected Mother;

In the example above, the members inherited by Rectangle and Triangle have the same access

permissions as they had in their base class Polygon:

1

2

3

4

5

This is because the inheritance relation has been declared using the public keyword on each of

the derived classes:

This public keyword after the colon (:) denotes the most accessible level the members inherited

from the class that follows it (in this case Polygon) will have from the derived class (in this

case Rectangle). Since public is the most accessible level, by specifying this keyword the derived

class will inherit all the members with the same levels they had in the base class.

With protected, all public members of the base class are inherited as protected in the derived

class. Conversely, if the most restricting access level is specified (private), all the base class

members are inherited as private.

For example, if daughter were a class derived from mother that we defined as:

This would set protected as the less restrictive access level for the members of Daughter that it

inherited from mother. That is, all members that were public in Mother would

become protected in Daughter. Of course, this would not restrict Daughter from declaring its

own public members. That less restrictive access level is only set for the members inherited

from Mother.

If no access level is specified for the inheritance, the compiler assumes private for classes

declared with keyword class and public for those declared with struct.

Actually, most use cases of inheritance in C++ should use public inheritance. When other access

levels are needed for base classes, they can usually be better represented as member variables

instead.

Types Of Inheritance

Polygon::width

Rectangle::width

// protected access

// protected access

Polygon::set_values() // public access

Rectangle::set_values() // public access

C++ supports five types of inheritance:

o Single inheritance

o Multiple inheritance

o Hierarchical inheritance

o Multilevel inheritance

o Hybrid inheritance

C++ Single Inheritance

Single inheritance is defined as the inheritance in which a derived class is inherited from the

only one base class.

Where 'A' is the base class, and 'B' is the derived class.

Salary: 60000

Bonus: 5000

C++ Single Level Inheritance Example: Inheriting Fields

When one class inherits another class, it is known as single level inheritance. Let's see the

example of single level inheritance which inherits the fields only.

1. #include <iostream>

2. using namespace std;

3. class Account {

4. public:

5. float salary = 60000; 6.

 };

7. class Programmer: public Account {

8. public:

9. float bonus = 5000;

10. };

11. int main(void) {

12. Programmer p1;

13. cout<<"Salary: "<<p1.salary<<endl;

14. cout<<"Bonus: "<<p1.bonus<<endl;

15. return 0;

16. }

Output:

In the above example, Employee is the base class and Programmer is the derived class.

C++ Single Level Inheritance Example: Inheriting Methods

Let's see another example of inheritance in C++ which inherits methods only.

1. #include <iostream>

2. using namespace std;

3. class Animal {

4. public:

5. void eat() {

6. cout<<"Eating..."<<endl; 7.

 }

8. };

Eating...

Barking...

9. class Dog: public Animal

10. {

11. public:

12. void bark(){

13. cout<<"Barking...";

14. }

15. };

16. int main(void) {

17. Dog d1;

18. d1.eat();

19. d1.bark();

20. return 0;

21. }

Output:

C++ Multilevel Inheritance

Multilevel inheritance is a process of deriving a class from another derived class.

C++ Multi Level Inheritance Example

Eating...

Barking...

Weeping...

When one class inherits another class which is further inherited by another class, it is known as

multi level inheritance in C++. Inheritance is transitive so the last derived class acquires all the

members of all its base classes.

Let's see the example of multi level inheritance in C++.

1. #include <iostream>

2. using namespace std;

3. class Animal {

4. public:

5. void eat() {

6. cout<<"Eating..."<<endl; 7.

 }

8. };

9. class Dog: public Animal

10. {

11. public:

12. void bark(){

13. cout<<"Barking..."<<endl;

14. }

15. };

16. class BabyDog: public Dog

17. {

18. public:

19. void weep() {

20. cout<<"Weeping...";

21. }

22. };

23. int main(void) {

24. BabyDog d1;

25. d1.eat();

26. d1.bark();

27. d1.weep();

28. return 0;

29. }

Output:

C++ Multiple Inheritance

Multiple inheritance is the process of deriving a new class that inherits the attributes from two

or more classes.

Syntax of the Derived class:

1. class D : visibility B-1, visibility B-2, ? 2.

{

3. // Body of the class;

4. }

Let's see a simple example of multiple inheritance.

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. protected:

6. int a;

7. public:

8. void get_a(int n)

9. {

10. a = n;

11. }

12. };

13.

14. class B

15. {

16. protected:

17. int b;

18. public:

19. void get_b(int n)

20. {

21. b = n;

The value of a is : 10

The value of b is : 20

Addition of a and b is : 30

22. }

23. };

24. class C : public A,public B

25. {

26. public:

27. void display()

28. {

29. std::cout << "The value of a is : " <<a<< std::endl;

30. std::cout << "The value of b is : " <<b<< std::endl;

31. cout<<"Addition of a and b is : "<<a+b;

32. }

33. };

34. int main()

35. {

36. C c;

37. c.get_a(10);

38. c.get_b(20);

39. c.display();

40.

41. return 0;

42. }

Output:

In the above example, class 'C' inherits two base classes 'A' and 'B' in a public mode.

Ambiquity Resolution in Inheritance

Ambiguity can be occurred in using the multiple inheritance when a function with the same

name occurs in more than one base class.

Let's understand this through an example:

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. public:

6. void display()

error: reference to 'display' is ambiguous

display();

The above issue can be resolved by using the class resolution operator with the function. In

the above example, the derived class code can be rewritten as:

7. {

8. std::cout << "Class A" << std::endl;

9. }

10. };

11. class B

12. {

13. public:

14. void display()

15. {

16. std::cout << "Class B" << std::endl;

17. }

18. };

19. class C : public A, public B

20. {

21. void view()

22. {

23. display();

24. }

25. };

26. int main()

27. {

28. C c;

29. c.display();

30. return 0;

31. }

Output:

1. class C : public A, public B 2.

{

3. void view()

4. {

5. A :: display(); // Calling the display() function of class A.

6. B :: display(); // Calling the display() function of class B.

7.

8. }

9. };

C++ Hybrid Inheritance

Hybrid inheritance is a combination of more than one type of inheritance.

Let's see a simple example:

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. protected:

6. int a;

7. public:

8. void get_a()

9. {

10. std::cout << "Enter the value of 'a' : " << std::endl;

11. cin>>a;

12. }

13. };

14.

15. class B : public A

16. {

17. protected:

18. int b;

19. public:

Enter the value of 'a' :

10

20. void get_b()

21. {

22. std::cout << "Enter the value of 'b' : " << std::endl;

23. cin>>b;

24. }

25. };

26. class C

27. {

28. protected:

29. int c;

30. public:

31. void get_c()

32. {

33. std::cout << "Enter the value of c is : " << std::endl;

34. cin>>c;

35. }

36. };

37.

38. class D : public B, public C

39. {

40. protected:

41. int d;

42. public:

43. void mul()

44. {

45. get_a();

46. get_b();

47. get_c();

48. std::cout << "Multiplication of a,b,c is : " <<a*b*c<< std::endl;

49. }

50. };

51. int main()

52. {

53. D d;

54. d.mul();

55. return 0;

56. }

Output:

C++ Hierarchical Inheritance

Hierarchical inheritance is defined as the process of deriving more than one class from a

base class.

Syntax of Hierarchical inheritance:

1. class A 2.

{

3. // body of the class A.

4. }

5. class B : public A 6.

{

7. // body of class B.

8. }

9. class C : public A

10. {

11. // body of class C.

12. }

13. class D : public A

14. {

15. // body of class D.

16. }

Let's see a simple example:

1. #include <iostream>

2. using namespace std;

Enter the value of 'b' :

20

Enter the value of c is :

30

Multiplication of a,b,c is : 6000

3. class Shape // Declaration of base class.

4. {

5. public:

6. int a;

7. int b;

8. void get_data(int n,int m) 9.

 {

10. a= n;

11. b = m;

12. }

13. };

14. class Rectangle : public Shape // inheriting Shape class

15. {

16. public:

17. int rect_area()

18. {

19. int result = a*b;

20. return result;

21. }

22. };

23. class Triangle : public Shape // inheriting Shape class

24. {

25. public:

26. int triangle_area()

27. {

28. float result = 0.5*a*b;

29. return result;

30. }

31. };

32. int main()

33. {

34. Rectangle r;

35. Triangle t;

36. int length,breadth,base,height;

37. std::cout << "Enter the length and breadth of a rectangle: " << std::endl;

38. cin>>length>>breadth;

39. r.get_data(length,breadth);

40. int m = r.rect_area();

41. std::cout << "Area of the rectangle is : " <<m<< std::endl;

42. std::cout << "Enter the base and height of the triangle: " << std::endl;

43. cin>>base>>height;

Enter the length and breadth of a rectangle:

23

20

Area of the rectangle is : 460

Enter the base and height of the triangle:

2

5

Area of the triangle is : 5

44. t.get_data(base,height);

45. float n = t.triangle_area();

46. std::cout <<"Area of the triangle is : " << n<<std::endl;

47. return 0;

48. }

Output:

Difference between Containership and Inheritance in C++

Containership: When an object of one class is created into another class then that object will be a member of that

class, this type of relationship between the classes is known as containership or has_a relationship as one class

contains the object of another class.

The class which contains the object and members of another class in this kind of relationship is called a container

class and the object that is part of another object is called a contained object whereas the object that contains another

object as its part or attribute is called a container object.

// C++ program to illustrate the

// concept of containership

#include <iostream>

using namespace std;

class first {

public:

 void showf()

 {

 cout << "Hello from first class\n";

 }

};

// Container class

class second {

 // Create object of the first-class

 first f;

public:

 // Define Constructor

 second()

 {

 // Call function of first-class

 f.showf();

https://www.geeksforgeeks.org/containership-in-c/
https://www.geeksforgeeks.org/c-classes-and-objects/
https://www.geeksforgeeks.org/c-classes-and-objects/

 }

};

// Driver Code

int main()

{

 // Create object of second class

 second s;

}

Output:

Hello from first class

Explanation: In the second class above, there is an object of class first. This type of inheritance is known

as has_a relationship as the class second has an object of class first as its member. From object f, the function of

class first is called.

Difference between Inheritance and Containership:

Inheritance Containership

It enables a class to inherit data and

functions from a base class

It enables a class to contain objects of different

classes as its data member.

The derived class may override the

functionality of the base class.

The container class can’t override the

functionality of the contained class.

The derived class may add data or

functions to the base class.

The container class can’t add anything to the

contained class.

Inheritance represents a “is-a” relationship. Containership represents a “has-a” relationship.

C++ Pointers

The pointer in C++ language is a variable, it is also known as locator or indicator that points to

an address of a value.

Advantage of pointer

1) Pointer reduces the code and improves the performance, it is used to retrieving strings, trees

etc. and used with arrays, structures and functions.

2) We can return multiple values from function using pointer.

3) It makes you able to access any memory location in the computer's memory.

Usage of pointer

There are many usage of pointers in C++ language.

1) Dynamic memory allocation

In c language, we can dynamically allocate memory using malloc() and calloc() functions

where pointer is used.

2) Arrays, Functions and Structures

Pointers in c language are widely used in arrays, functions and structures. It reduces the code

and improves the performance.

Symbols used in pointer

Symbol Name Description

& (ampersand sign)

Address operator

Determine the address of a variable.

∗ (asterisk sign)

Indirection operator

Access the value of an address.

Declaring a pointer

The pointer in C++ language can be declared using ∗ (asterisk symbol).

1. int ∗ a; //pointer to int

2. char ∗ c; //pointer to char

Pointer Example

Let's see the simple example of using pointers printing the address and value.

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int number=30;

6. int ∗ p;

7. p=&number;//stores the address of number variable

8. cout<<"Address of number variable is:"<<&number<<endl;

9. cout<<"Address of p variable is:"<<p<<endl;

10. cout<<"Value of p variable is:"<<*p<<endl;

Address of number variable is:0x7ffccc8724c4

Address of p variable is:0x7ffccc8724c4

Value of p variable is:30

Before swap: ∗p1=20 ∗p2=10
After swap: ∗p1=10 ∗p2=20

11. return 0;

12. }

Output:

Pointer Program to swap 2 numbers without using 3rd variable

1. #include <iostream>

2. using namespace std;

3. int main()

4. {

5. int a=20,b=10,∗p1=&a,∗p2=&b;

6. cout<<"Before swap: ∗p1="<<∗p1<<" ∗p2="<<∗p2<<endl; 7.

∗p1=∗p1+∗p2;

8. ∗p2=∗p1-∗p2;

9. ∗p1=∗p1-∗p2;

10. cout<<"After swap: ∗p1="<<∗p1<<" ∗p2="<<∗p2<<endl;

11. return 0;

12. }

Output:

C++ this Pointer

In C++ programming, this is a keyword that refers to the current instance of the class. There

can be 3 main usage of this keyword in C++.

o It can be used to pass current object as a parameter to another method.

o It can be used to refer current class instance variable.

o It can be used to declare indexers.

C++ this Pointer Example

101 Sonoo 890000

102 Nakul 59000

Let's see the example of this keyword in C++ that refers to the fields of current class.

1. #include <iostream>

2. using namespace std;

3. class Employee {

4. public:

5. int id; //data member (also instance variable)

6. string name; //data member(also instance variable)

7. float salary;

8. Employee(int id, string name, float salary) 9.

 {

10. this->id = id;

11. this->name = name;

12. this->salary = salary;

13. }

14. void display()

15. {

16. cout<<id<<" "<<name<<" "<<salary<<endl;

17. }

18. };

19. int main(void) {

20. Employee e1 =Employee(101, "Sonoo", 890000); //creating an object of Employee

21. Employee e2=Employee(102, "Nakul", 59000); //creating an object of Employee

22. e1.display();

23. e2.display();

24. return 0;

25. }

Output:

int const*

int const* is pointer to constant integer

This means that the variable being declared is a pointer, pointing to a constant integer. Effectively, this implies that

the pointer is pointing to a value that shouldn’t be changed. Const qualifier doesn’t affect the pointer in this

scenario so the pointer is allowed to point to some other address.

The first const keyword can go either side of data type, hence int const* is equivalent to const int*.

#include <stdio.h

int main(){

 const int q = 5;

 int const* p = &q;

 //Compilation error

 *p = 7;

 const int q2 = 7;

 //Valid

 p = &q2;

 return 0;

}

int *const

int *const is a constant pointer to integer

This means that the variable being declared is a constant pointer pointing to an integer. Effectively, this implies

that the pointer shouldn’t point to some other address. Const qualifier doesn’t affect the value of integer in this

scenario so the value being stored in the address is allowed to change.

#include <stdio.h>

int main(){

 const int q = 5;

 //Compilation error

 int *const p = &q;

 //Valid

 *p = 7;

 const int q2 = 7;

 //Compilation error

 p = &q2;

 return 0;

}

const int* const

const int* const is a constant pointer to constant integer

This means that the variable being declared is a constant pointer pointing to a constant integer. Effectively, this

implies that a constant pointer is pointing to a constant value. Hence, neither the pointer should point to a new

address nor the value being pointed to should be changed.

The first const keyword can go either side of data type, hence const int* const is equivalent to int const* const.

#include <stdio.h>

int main(){

 const int q = 5;

 //Valid

 const int* const p = &q;

 //Compilation error

 *p = 7;

 const int q2 = 7;

 //Compilation error

 p = &q2;

 return 0;

}

Static Variables

• Static variables in a Function: When a variable is declared as static, space for it gets allocated for the

lifetime of the program. Even if the function is called multiple times, space for the static variable is allocated

only once and the value of variable in the previous call gets carried through the next function call.

// C++ program to demonstrate

// the use of static Static

// variables in a Function

#include <iostream>

#include <string>

using namespace std;

void demo()

{

 // static variable

 static int count = 0;

 cout << count << " ";

 // value is updated and

 // will be carried to next

 // function calls

 count++;

}

int main()

{

 for (int i=0; i<5; i++)

 demo();

 return 0;

}

Output:

0 1 2 3 4

You can see in the above program that the variable count is declared as static. So, its value is carried through

the function calls. The variable count is not getting initialized for every time the function is called.

Static variables in a class: As the variables declared as static are initialized only once as they are allocated

space in separate static storage so, the static variables in a class are shared by the objects. There can not be

multiple copies of same static variables for different objects.

// C++ program to demonstrate static

// variables inside a class

#include<iostream>

using namespace std;

class ABC

{

public:

 static int i;

 ABC()

 {

 // Do nothing

 };

};

int ABC::i = 1;

int main()

{

 ABC obj;

 // prints value of i

 cout << obj.i;

}

Output:

1

Static functions in a class: Just like the static data members or static variables inside the class, static member

functions also does not depend on object of class. We are allowed to invoke a static member function using the

object and the ‘.’ operator but it is recommended to invoke the static members using the class name and the

scope resolution operator.

Static member functions are allowed to access only the static data members or other static member

functions, they can not access the non-static data members or member functions of the class.

// C++ program to demonstrate static

// member function in a class

#include<iostream>

using namespace std;

class ABC

{

 public:

 // static member function

 static void printMsg()

 {

 cout<<"Welcome!";

 }

};

// main function

int main()

{

 // invoking a static member function

 ABC::printMsg();

}

Output:

Welcome!

C++ Polymorphism

The word polymorphism means having many forms. In simple words, we can define polymorphism as the ability

of a message to be displayed in more than one form.

In C++ polymorphism is mainly divided into two types:

• Compile time Polymorphism

• Runtime Polymorphism

1. Compile time polymorphism: This type of polymorphism is achieved by function overloading or operator

overloading.

Function Overloading:

When there are multiple functions with same name but different parameters then these functions are said to

be overloaded. Functions can be overloaded by change in number of arguments or/and change in type of

arguments.

https://www.geeksforgeeks.org/function-overloading-c/
https://www.geeksforgeeks.org/function-overloading-c/

// C++ program for function overloading

#include <bits/stdc++.h>

using namespace std;

class XYZ

{

 public:

 // function with 1 int parameter

 void func(int x)

 {

 cout << "value of x is " << x << endl;

 }

 // function with same name but 1 double parameter

 void func(double x)

 {

 cout << "value of x is " << x << endl;

 }

 // function with same name and 2 int parameters

 void func(int x, int y)

 {

 cout << "value of x and y is " << x << ", " << y << endl;

 }

};

int main() {

 XYZ obj1;

 // Which function is called will depend on the parameters passed

 // The first 'func' is called

 obj1.func(7);

 // The second 'func' is called

 obj1.func(9.132);

 // The third 'func' is called

 obj1.func(85,64);

 return 0;

}

Output:

value of x is 7

value of x is 9.132

value of x and y is 85, 64

In the above example, a single function named func acts differently in three different situations which is the property

of polymorphism.

Operator Overloading:

C++ also provide option to overload operators. For example, we can make the operator (‘+’) for string class to

concatenate two strings. We know that this is the addition operator whose task is to add two operands. So a single

operator ‘+’ when placed between integer operands , adds them and when placed between string operands,

concatenates them.

Example:

// CPP program to illustrate

// Operator Overloading

#include<iostream>

using namespace std;

class Complex {

private:

 int real, imag;

public:

 Complex(int r = 0, int i =0) {real = r; imag = i;}

https://www.geeksforgeeks.org/operator-overloading-c/

 // This is automatically called when '+' is used with

 // between two Complex objects

 Complex operator + (Complex const &obj) {

 Complex res;

 res.real = real + obj.real;

 res.imag = imag + obj.imag;

 return res;

 }

 void print() { cout << real << " + i" << imag << endl; }

};

int main()

{

 Complex c1(10, 5), c2(2, 4);

 Complex c3 = c1 + c2; // An example call to "operator+"

 c3.print();

}

Output:

12 + i9

In the above example the operator ‘+’ is overloaded. The operator ‘+’ is an addition operator and can add two

numbers(integers or floating point) but here the operator is made to perform addition of two imaginary or complex

numbers.

Runtime polymorphism: This type of polymorphism is achieved by Function Overriding and virtual functions

.

Function overriding on the other hand occurs when a derived class has a definition for one of the member

functions of the base class. That base function is said to be overridden.

If derived class defines same function as defined in its base class, it is known as function overriding in C++. It is used

to achieve runtime polymorphism. It enables you to provide specific implementation of the function which is already

provided by its base class.

C++ Function Overriding Example

Let's see a simple example of Function overriding in C++. In this example, we are overriding the eat() function

#include <iostream>

using namespace std;

class Animal {

 public:

void eat(){

cout<<"Eating...";

 }

};

class Dog: public Animal

{

 public:

 void eat()

 {

 cout<<"Eating bread...";

 }

};

int main(void) {

 Dog d = Dog();

 d.eat();

 return 0;

}

Output:

Eating bread...

https://www.geeksforgeeks.org/virtual-functions-and-runtime-polymorphism-in-c-set-1-introduction/
https://www.geeksforgeeks.org/override-keyword-c/

C++ virtual function

 Virtual function is a member function in the base class that you redefine in a derived class. It is declared using the

virtual keyword.

o It is used to tell the compiler to perform dynamic linkage or late binding on the function.

o There is a necessity to use the single pointer to refer to all the objects of the different classes. So,

we create the pointer to the base class that refers to all the derived objects. But, when base class

pointer contains the address of the derived class object, always executes the base class function.

This issue can only be resolved by using the 'virtual' function.

o A 'virtual' is a keyword preceding the normal declaration of a function.

o When the function is made virtual, C++ determines which function is to be invoked at the

runtime based on the type of the object pointed by the base class pointer.

Rules of Virtual Function

o Virtual functions must be members of some class.

o Virtual functions cannot be static members.

o They are accessed through object pointers.

o They can be a friend of another class.

o A virtual function must be defined in the base class, even though it is not used.

o The prototypes of a virtual function of the base class and all the derived classes must be identical.

If the two functions with the same name but different prototypes, C++ will consider them as the

overloaded functions.

o We cannot have a virtual constructor, but we can have a virtual destructor

o Consider the situation when we don't use the virtual keyword.

1. #include <iostream>

2. using namespace std;

3. class A

4. {

5. int x=5;

6. public:

7. void display()

8. {

9. std::cout << "Value of x is : " << x<<std::endl;

10. }

11. };

12. class B: public A

13. {

14. int y = 10;

15. public:

16. void display()

17. {

18. std::cout << "Value of y is : " <<y<< std::endl;

19. }

20. };

21. int main()

22. {

23. A *a;

24. B b;

25. a = &b;

26. a->display();

27. return 0;

28. }

Output:

Value of x is : 5

In the above example, * a is the base class pointer. The pointer can only access the base class

members but not the members of the derived class. Although C++ permits the base pointer to

point to any object derived from the base class, it cannot directly access the members of the

derived class. Therefore, there is a need for virtual function which allows the base pointer to

access the members of the derived class.

C++ virtual function Example

Let's see the simple example of C++ virtual function used to invoked the derived class in a

program.

1. #include <iostream>

 2. {

3. public:

4. virtual void display()

5. {

6. cout << "Base class is invoked"<<endl; 7.

 }

8. };

9. class B:public A

10. {

11. public:

12. void display()

13. {

14. cout << "Derived Class is invoked"<<endl;

15. }

16. };

17. int main()

18. {

19. A* a; //pointer of base class

20. B b; //object of derived class

21. a = &b;

22. a->display(); //Late Binding occurs

23. }

Output:

Derived Class is invoked

Pure Virtual Function

o A virtual function is not used for performing any task. It only serves as a

placeholder.

o When the function has no definition, such function is known as "do-nothing" function.

o The "do-nothing" function is known as a pure virtual function. A pure virtual function is a

function declared in the base class that has no definition relative to the base class.

o A class containing the pure virtual function cannot be used to declare the objects of its own,

such classes are known as abstract base classes.

o The main objective of the base class is to provide the traits to the derived classes and to

create the base pointer used for achieving the runtime polymorphism.

Pure virtual function can be defined as:

1. virtual void display() = 0;

Let's see a simple example:

1. #include <iostream>

2. using namespace std;

3. class Base

4. {

5. public:

6. virtual void show() = 0; 7.

};

8. class Derived : public Base 9. {

10. public:

11. void show()

12. {

13. std::cout << "Derived class is derived from the base class." << std::endl;

14. }

15. };

16. int main()

17. {

18. Base *bptr;

19. //Base b;

20. Derived d;

21. bptr = &d;

22. bptr->show();

23. return 0;

24. }

Output:

Derived class is derived from the base class.

In the above example, the base class contains the pure virtual function. Therefore, the base class

is an abstract base class. We cannot create the object of the base class.

Virtual base class in C++

Virtual base classes are used in virtual inheritance in a way of preventing multiple “instances” of a given class

appearing in an inheritance hierarchy when using multiple inheritances.

Need for Virtual Base Classes:

Consider the situation where we have one class A .This class is A is inherited by two other classes B and C. Both

these class are inherited into another in a new class D as shown in figure below.

As we can see from the figure that data members/function of class A are inherited twice to class D. One through

class B and second through class C. When any data / function member of class A is accessed by an object of

class D, ambiguity arises as to which data/function member would be called? One inherited through B or the other

inherited through C. This confuses compiler and it displays error.

To resolve this ambiguity when class A is inherited in both class B and class C, it is declared as virtual base

class by placing a keyword virtual as :

Syntax for Virtual Base Classes:

Syntax 1:

class B : virtual public A

{

};

Syntax 2:

class C : public virtual A

{

};

#include <iostream>

using namespace std;

class A {

public:

 int a;

 A() // constructor

 {

 a = 10;

 }

};

class B : public virtual A {

};

class C : public virtual A {

};

class D : public B, public C {

};

int main()

{

 D object; // object creation of class d

 cout << "a = " << object.a << endl;

 return 0;

}

Output:

a = 10

Explanation :The class A has just one data member a which is public. This class is virtually inherited in

class B and class C. Now class B and class C becomes virtual base class and no duplication of data member a is

done.

